Myceliophthora thermophila ATCC 42464


Genome Project

Mycth v2 - Joint Genome Institute, U.S. Department of Energy

EST Project

Annotated cDNA - Centre for Structural and Functional Genomics, Concordia University

Species Information (Mycobank)

Name

Myceliophthora thermophila (Apinis) Oorschot 1977 [1]

Basionym

Sporotrichum thermophilum Apinis 1963 [2]

Obligate synonym

Chrysosporium thermophilum (Apinis) Klopotek 1974 [3]

Associated teleomorph

Thielavia heterothallica Klopotek 1976 [4]

Lineage (abbreviated from NCBI Taxonomy)

Fungi; Ascomycota; Sordariomycetes; Sordariomycetidae; Sordariales; Chaetomiaceae; Thielavia; Thielavia heterothallica; Myceliophthora thermophila

Ecology

Frequently isolated from soil and self-heating compost, Myceliophthora thermophila grows optimally between 40°C and 50°C. Strains of M. thermophila available in public repositories have been isolated from Africa, Asia, Europe and North America.

Interesting Features

Decomposer of lignocellulose

Myceliophthora thermophila is an efficient decomposer of straws. Its growth rate on insoluble cellulose is similar to its growth rate on glucose [5]. The enzymes and enzyme cocktails derived from this species would promote the development of bioproducts.

Thermoactive enzymes

Extracellular enzymes of M. thermophila that have been characterized include: cellobiohydrolase (exoglucanase), cellobiose dehydrogenase [6], endoglucanase [7], feruloyl esterase [8], galactanase [9], glucuronoyl esterase [10], laccase [11], phytase [12], polygalacturonase [13], and xylanase [14]. All these enzymes exhibit temperature optimum of 55°C or higher.

Bioactive molecules

Myceliophthora thermophila is known to produce molecules with potential medical applications. These include: estatins, specific thio protease inhibitors that suppress IgE production [15]; anti-microbial xylo-oligosacchrides [16]; and cytotoxic polyketides [17]. Moreover, recombinant M. thermophila laccase has been used to develop biosensor for the determination of phenols [18] and the production of potential antimicrobial and antifungal agents [19,20,21]

Infections

Myceliophthora thermophila has been implicated in rare, post-traumatic infections. This species has been isolated from patients with heart and aorta infections after cardiac surgery [22,23], and from penetrating wounds associated with farm accidents [24,25].

References

1. van Oorschot CAN (1977) The genus Myceliophthora. Persoonia 9: 401-408.

2. Apinis AE (1963) Occurrence of thermophilous microfungi in certain alluvial soils near Nottingham. Nova Hedwigia 5: 57-78.

3. von Klopotek A (1974) [Revision of thermophilic Sporotrichum species: Chrysosporium thermophilum (Apinis) comb. nov. and Chrysosporium fergusii spec. nov. equal status conidialis of Corynascus thermophilus Fergus and (Sinden) comb. nov]. Arch Microbiol 98: 365-369. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=4858767]

4. von Klopotek A (1976) [Thielavia heterothallica spec. nov. (Abb.1) Status conidialis: Chrysosporium thermophilum (Apinis) von Klopotek]. Arch Microbiol 107: 223-224. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=944025]

5. Bhat KM, Maheshwari R (1987) Sporotrichum thermophile Growth, Cellulose Degradation, and Cellulase Activity. Appl Environ Microbiol 53: 2175-2182. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16347439]

6. Subramaniam SS, Nagalla SR, Renganathan V (1999) Cloning and characterization of a thermostable cellobiose dehydrogenase from Sporotrichum thermophile. Arch Biochem Biophys 365: 223-230. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=10328816]

7. Roy SK, Dey SK, Raha SK, Chakrabarty SL (1990) Purification and properties of an extracellular endoglucanase from Myceliophthora thermophila D-14 (ATCC 48104). J Gen Microbiol 136: 1967-1971. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2269871]

8. Topakas E, Stamatis H, Biely P, Christakopoulos P (2004) Purification and characterization of a type B feruloyl esterase (StFAE-A) from the thermophilic fungus Sporotrichum thermophile. Appl Microbiol Biotechnol 63: 686-690. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14615854]

9. Le Nours J, Ryttersgaard C, Lo Leggio L, Ostergaard PR, Borchert TV, et al. (2003) Structure of two fungal beta-1,4-galactanases: searching for the basis for temperature and pH optimum. Protein Sci 12: 1195-1204. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12761390]

10. Vafiadi C, Topakas E, Biely P, Christakopoulos P (2009) Purification, characterization and mass spectrometric sequencing of a thermophilic glucuronoyl esterase from Sporotrichum thermophile. FEMS Microbiol Lett 296: 178-184. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19459957]

11. Berka RM, Schneider P, Golightly EJ, Brown SH, Madden M, et al. (1997) Characterization of the gene encoding an extracellular laccase of Myceliophthora thermophila and analysis of the recombinant enzyme expressed in Aspergillus oryzae. Appl Environ Microbiol 63: 3151-3157. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9251203]

12. Singh B, Satyanarayana T (2009) Characterization of a HAP-phytase from a thermophilic mould Sporotrichum thermophile. Bioresour Technol 100: 2046-2051. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19054669]

13. Kaur G, Kumar S, Satyanarayana T (2004) Production, characterization and application of a thermostable polygalacturonase of a thermophilic mould Sporotrichum thermophile Apinis. Bioresour Technol 94: 239-243. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15182829]

14. Katapodis P, Vrsanska M, Kekos D, Nerinckx W, Biely P, et al. (2003) Biochemical and catalytic properties of an endoxylanase purified from the culture filtrate of Sporotrichum thermophile. Carbohydr Res 338: 1881-1890. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12932372]

15. Yaginuma S, Asahi A, Morishita A, Hayashi M, Tsujino M, et al. (1989) Isolation and characterization of new thiol protease inhibitors estatins A and B. J Antibiot (Tokyo) 42: 1362-1369. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2793591]

16. Christakopoulos P, Katapodis P, Kalogeris E, Kekos D, Macris BJ, et al. (2003) Antimicrobial activity of acidic xylo-oligosaccharides produced by family 10 and 11 endoxylanases. Int J Biol Macromol 31: 171-175. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12568925]

17. Yang YL, Lu CP, Chen MY, Chen KY, Wu YC, et al. (2007) Cytotoxic polyketides containing tetramic acid moieties isolated from the fungus Myceliophthora Thermophila: elucidation of the relationship between cytotoxicity and stereoconfiguration. Chemistry 13: 6985-6991. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17503417]

18. Kulys J, Vidziunaite R (2003) Amperometric biosensors based on recombinant laccases for phenols determination. Biosens Bioelectron 18: 319-325. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12485779]

19. Hahn V, Mikolasch A, Wende K, Bartrow H, Lindequist U, et al. (2009) Synthesis of model morpholine derivatives with biological activities by laccase-catalysed reactions. Biotechnol Appl Biochem 54: 187-195. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19788410]

20. Bohlin C, Lundquist K, Jonsson LJ (2009) Oxidation of the erythro and threo forms of the phenolic lignin model compound 1-(4-hydroxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)-1,3-propanediol by laccases and model oxidants. Bioorg Chem 37: 143-148. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19646732]

21. Mikolasch A, Niedermeyer TH, Lalk M, Witt S, Seefeldt S, et al. (2007) Novel cephalosporins synthesized by amination of 2,5-dihydroxybenzoic acid derivatives using fungal laccases II. Chem Pharm Bull (Tokyo) 55: 412-416. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17329882]

22. Farina C, Gamba A, Tambini R, Beguin H, Trouillet JL (1998) Fatal aortic Myceliophthora thermophila infection in a patient affected by cystic medial necrosis. Med Mycol 36: 113-118. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9776822]

23. Weitzel N, Puskas F, Cleveland J, Levi ME, Seres T (2009) Left ventricular assist device outflow cannula obstruction by the rare environmental fungus Myceliophthora thermophila. Anesth Analg 108: 73-75. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19095833]

24. Destino L, Sutton DA, Helon AL, Havens PL, Thometz JG, et al. (2006) Severe osteomyelitis caused by Myceliophthora thermophila after a pitchfork injury. Ann Clin Microbiol Antimicrob 5: 21. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16961922]

25. Tekkok IH, Higgins MJ, Ventureyra EC (1996) Posttraumatic gas-containing brain abscess caused by Clostridium perfringens with unique simultaneous fungal suppuration by Myceliophthora thermophila: case report. Neurosurgery 39: 1247-1251. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8938783]